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A quantum-kinetic theory has been formulated to describe the spatiotemporal microscopic carrier dy-

namics in laser excited semiconductor materials that accounts for the effects of inhomogeneous excitation

and structural inhomogeneities due to bulk fillamentation damage and micro/nano structuring by introducing

space dependent carrier distributions and coherency. Two alternative approaches to the problem have been

presented - one is a non-trivial generalization of our previously derived Fokker-Planck equation in energy

space, and the other is density matrix based formalism. Both approaches involve extensive computational

effort.

I. NON-LOCAL FOKKER-PLANCK EQUATION FOR LASER-INDUCED BREAKDOWN IN

MATERIALS

A. Introduction

Ultra-short laser-induced breakdown studies have revealed the possibility of self-channeling ultrafast

light in condensed media with the strong involvement of single or multiphoton ionization and avalanche

ionization capable of delivering high free-electron densities. The full description of the laser-matter interac-

tion process leading to material modification, and the complex spatio-temporal dynamics of the beam prop-

agation in the media from first principles comprises the nonlinear Schrödinger equation for the laser electric

field envelope coupled with an equation describing the growth of the free-electron density n(~r, t) [1], [2].

Usually the equation for n(~r, t) employed in the literature is a simple rate equation not accounting for the

energy absorption process from the laser field. The slowly varying [1] envelope function ~E of the electric

field of the laser ~E is defined by: ~E (~r, t) =
√

ΩLµ0

2k0

~E (~r, t) ei(k0z−Ω0t) + c.c. (for a pulsed beam centered

on the operating frequency ΩL, wave number k0); we choose the electromagnetic radiation to be polarized

in the x direction ~E = (E, 0, 0). The free electrons motion is governed by the oscillation of the inhomoge-

neous optical field beating at ΩL so that an electron current density with a slowly varying envelope induces

a variation of the local population of electrons in space and time leading to a space-dependent carrier distri-

bution. Since the time development of the avalanche ionization process depends also very strongly on the

values of the field, it follows that at any spatially non-uniform distribution of the electromagnetic radiation

density, initial electron density gradients ∇r could occur that may give rise to more or less strong diffusion

currents. Therefore, instead of using a simple rate equation for the electron density n(~r, t) produced by the

laser field, we augment phenomenologically the kinetic equation previously derived by us for the electron

energy distribution function to account for its spatial dependence when the laser field is spatially inhomo-

geneous. The rates in the equation explicitly include the effect of laser field energy absorption by the free

electrons.
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B. Theoretical model

A kinetic equation is derived for the conduction-electron distribution function following references [3, 4,

5]. We assume that the frequency of the electromagnetic field satisfies the conditions 1 ¿ ΩLτp ¿ c/v̄ (the

electromagnetic field frequency exceeds appreciably the frequency of electron-phonon collisions), Ω À ωp,

ε̄τp À 1 (where τp is the momentum relaxation time, ωp is the electron plasma frequency and ε̄ and v̄ are

the average energy and velocity of the electron). These conditions are sufficient to guarantee the penetration

of the electromagnetic field deeply into the semiconductor and also mean that the wavelength is much larger

than the mean-free-path or the De Broglie wavelength of an electron, the wavelength of the phonons which

interact with the electrons and allow for the use of dipole approximation of the radiation field. They imply

that the dependences of these processes on the electromagnetic field are local. Under the same conditions,

the magnetic field contribution to the interaction with the laser field is negligible because it is of the same

order of magnitude as the electric quadrupole contribution. We first consider an electron-phonon system in

a spatially uniform sinusoidal electric field with a vector potential A(t) = A sin(ΩLt) and find the solution

of the Schrödinger equation

i~
∂ψ(⇀

r , t)
∂t

=
1

2m∗
[

⇀
p +

e

c

⇀

A
(⇀
r , t

)]2
ψ

(⇀
r , t

)
. (1)

Using the standard time-dependent perturbation theory and the calculated electron wave function renor-

malized by the laser field, we calculate the electron transition rate. Unlike the isotropic transition rate

obtained in the absence of the laser field, the presence of linearly polarized electromagnetic radiation re-

sults in an anisotropic electronic transition rate characterized by field dependence via a Bessel function

term – this effect is known as free-electron absorption of photons. For moderately high intensities of the

laser radiation, the Bessel function is expanded to second order. In the diffusive limit ~ωq ¿ Ee
k, where

Ee
k = ~2k2

/
2m∗e and ~ωq are the free electron kinetic energy in the conduction band with effective mass

m∗
e and the phonon energy respectively, the electron distribution function is expanded in Taylor series.

Thus the linearized Fokker-Plank type equation is obtained. The classical Joule heating of electrons from

the field which is conspicuously missing in other quantum-kinetic approaches is included by taking into

account the local fluctuation of the electron kinetic energies. Source terms such as stimulated interband

electron transitions due to a single or multiphoton absorption, impact ionization due to Coulomb interaction

between electrons and holes and sink terms such as non-radiative recombination due to a phonon-mediated

interaction are included in the equation:

∂fe (E, t)
∂t

+ V (E, t)
∂fe (E, t)

∂E
−D (E, t)

∂2fe (E, t)

∂
(
Ee

k

)2 = A (E, t) fe (E, t) + S (E, t) . (2)
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The rates in equation (2) are given by the following expressions [3], [4]:

V (E, t) = VT (E) + VF (E) +
1
3
σ (ΩL) E2 + AT (E)

τp

3
σ (ΩL) E2, (3)

D (E, t) = DT (E) + DF (E) +
2
3
σ (ΩL) E2Ee

k + VT (E)
τp

3
σ (ΩL) E2, (4)

where

VT

(
E~k

)
=

2π

~
∑
⇀
q λ

∣∣∣C⇀
q λ

∣∣∣
2
~ω⇀

q λ
×

[
Nph

⇀
q λ

δ
(
E~k
−E~k+~q

−~ω⇀
q λ

)
−

(
Nph

⇀
q λ

+1
)

δ
(
E~k
−E~k+~q

+~ω⇀
q λ

)]
, (5)

VF=
2π

~
∑
⇀
q λ

∣∣∣C⇀
q λ

∣∣∣
2
=2

~q ×Nph
⇀
q λ

(Ek − Ek−q)
[
δ
(
E~k
−E~k−~q

−~ω⇀
q λ

+~ΩL

)
+δ

(
E~k
−E~k−~q

−~ω⇀
q λ
−~ΩL

)]

+
(
Nph

⇀
q λ

+1
)

(Ek−Ek−q)
[
δ
(
E~k
−E~k+~q

+~ω⇀
q λ

+~ΩL

)
+δ

(
E~k
−E~k+~q

+~ω⇀
q λ
−~ΩL

)]
, (6)

DT (E~k
)=

π

~
∑
⇀
q λ

|C⇀
q λ
|2(~ω⇀

q λ
)2 ×

[
Nph

⇀
q λ

δ(E~k
−E~k+~q

−~ω⇀
q λ

)−(Nph
⇀
q λ

+1)δ(E~k
−E~k+~q

+~ω⇀
q λ

)
]
, (7)

DF=
π

4~
∑
⇀
q λ

|C⇀
q λ
|2=2

~q ×Nph
⇀
q λ

(Ek−Ek−q)2
[
δ(E~k

−E~k−~q
−~ω⇀

q λ
+~ΩL)+δ(E~k

−E~k−~q
−~ω⇀

q λ
−~ΩL)

]

+(Nph
⇀
q λ

+ 1)(Ek − Ek−q)2
[
δ(E~k

− E~k+~q
+ ~ω⇀

q λ
+ ~ΩL) + δ(E~k

−E~k+~q
+ ~ω⇀

q λ
− ~ΩL)

]
. (8)

The right-hand side of (1) contains the coefficients for thermal spontaneous phonon emission and the

one for the field-induced phonon emission.

AT (E~k
) =

2π

~
∑
⇀
q λ

|C⇀
q λ
|2 ×

[
Nph

⇀
q λ

δ(E~k
− E~k+~q

− ~ω⇀
q λ

)− (Nph
⇀
q λ

+ 1)δ(E~k
−E~k+~q

+ ~ω⇀
q λ

)
]
, (9)

AF =
π

2~
∑
⇀
q λ

|C⇀
q λ
|2

(
e|~q.~E(t)|/m∗Ω2

L

)2
×

[
δ(E~k

−E~k−~q
−~ω⇀

q λ
+~ΩL)+δ(E~k

−E~k−~q
−~ω⇀

q λ
−~ΩL)

]

+
[
δ(E~k

− E~k+~q
+ ~ω⇀

q λ
+ ~ΩL) + δ(E~k

−E~k+~q
+ ~ω⇀

q λ
− ~ΩL)

]
. (10)

In these expressions E denotes the amplitude of the laser field, the indices T and F denote the thermal

contribution due to phonon scattering and field induced contribution respectively,
∣∣∣C⇀

q λ

∣∣∣ is the electron-

phonon coupling and =~q =
(
e
∣∣∣~q.~E (t)

∣∣∣
/

m∗Ω2
L

)
. The expressions for the field dependent rates AF , VF

and DF reveal that in the presence of electromagnetic radiation the electron-phonon scattering can be ac-

companied by electronic transitions through photon absorption and emission.
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C. Generalized Fokker-Planck kinetic equation

By explicitly substituting the spatially dependent envelope of the laser ~E
(⇀
r , t

)
field in equations (3)–

(10) the space and energy dependent rates V
(⇀
r , E, t

)
and D

(⇀
r , E, t

)
are obtained. Equation (2) is different

from the standard Fokker-Planck equation since the derivation does not make it a conservation equation of

the electron number and current density even in the absence of the source terms. We define the current in

energy space:

JE (E, t) = V (E, t) fe (E, t)− ∂ [D(E, t)fe (E, t)]
∂E

,

and equation (2) is written as

∂fe (E, t)
∂t

+
∂JE (E, t)

∂E
+2

∂D (E, t)
∂E

∂fe (E, t)
∂E

= A (E, t) fe (E, t)+Ã (E, t) fe (E, t)+S(E, t), (11)

where Ã(E, t) =
∂V (E, t)

∂E
− ∂2D(E, t)

∂E2
.

For the time being we ignore the third term on the left-hand side of equation (11). Bearing in mind

that the Joule heating V
(⇀
r , E, t

)
and diffusion D

(⇀
r , E, t

)
rates of equation (2) already include space

dependence, a generalized current J0 (~r,E, t) is defined reflecting the energy gain or loss by electrons. The

electron distribution function is also generalized to include space dependence

J0 (E,~r, t) = V (E,~r, t) f (E,~r, t)− ∂ [D(E,~r, t)f (E,~r, t)]
∂E

.

In references [6] and [7], a theory of electron drift and diffusion was proposed allowing for a non-

equilibrium energy distribution, such as occurs in high electric fields. The transport equation assumes

a form of a Fokker-Planck equation in a four-dimensional (4D) energy-position continuum instead of the

3D position space. In this equation the 4D current density is a sum of a drift and a diffusion terms that

depend on the (E,~r) point. The use of this equation assumes that not only the energy but also the position

coordinates vary continuously, therefore demanding that the electron energy be exchanged with the lattice

in small steps (e.g. phonons of energy ~ωq ¿ E) and that electron velocity be finite.

Following [6], electron transport in an inhomogeneous laser field involving continuous energy and coor-

dinate changes is described by an equation of continuity in the energy-position manifold. So we generalize

equation (11) as

∂fe (E,~r, t)
∂t

+
∂J0 (E,~r, t)

∂E
+

∂Jβ (E,~r, t)
∂xβ

=
[
A (E,~r, t) + Ã (E,~r, t)

]
fe (E,~r, t)+S (E,~r, t) (12)

by adding currents in real space, where the Greek indices run from 1 to 3.
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Due to our choice of laser field polarization in the x direction, we get for the currents in space:

Jx(E,~r, t) = vd(E,~r, t)fe(E,~r, t)− ∂[eE(~r, t)Dx(E,~r, t)fe(E,~r, t)]
∂E

− ∂[Dx(E,~r, t)fe(E,~r, t)]
∂x

, (13)

Jy(E,~r, t) = −∂[eE(~r, t)Dx(E,~r, t)fe(E,~r, t)]
∂E

− ∂[Dx(E,~r, t)fe(E,~r, t)]
∂y

, (14)

Jz(E,~r, t) = −∂[eE(~r, t)Dx(E,~r, t)fe(E,~r, t)]
∂E

− ∂[Dx(E,~r, t)fe(E,~r, t)]
∂z

. (15)

In equations (13)–(15), E (~r, t) is the laser field envelope. We also generalize the expression for single

photon excitation across the bandgap. The other two terms included in S(E,~r, t) – the impact ionization

and the Auger recombination – are not affected directly by the laser field in our derivation.

Sabs ∝ 2π

~
|Fk|2

[
2Fk/π(

~ΩL − Ee
k − Eh

k −EG

)2 + 4 |Fk|2

]
, (16)

|Fk|2 ≈ e2E2
0L (x, y, z, t)
m0ΩL

[(
m0

m∗
e

− 1
)

EG (EG + ∆0)
2 (EG + 2∆0/3)

]
. (17)

D. Relation between the rates in energy and coordinate space

Following closely references [8, 9, 10], we establish the connection between the real space drift ve-

locity and the field dependent velocity in energy space which we have already derived. In this way we

circumvent the necessity to introduce an expression for the energy dependent electron mobility in the

given material and also use a quantum mechanically derived rate. We consider an electron with mo-

mentum ~p0 and energy E (~p0) at time t = 0. We define ∂F = e~E · ∇p where ~E denotes the negative

laser electric field. Then the energy change after t = 0 before any collision occurs is: E (t) − E0 =

(∂F E)p0
t + 1/2

(
∂2

F E
)
p0

t2 + . . . The probability for the electron starting from ~p0 not to experience col-

lisions between 0 and t is c (t) = exp
{
−

t∫
0

dt′/[τ (~p)]
}

, where account is taken of the change in τ as

the electron momentum changes in time as d~p
/

dt = e ~E. Upon first order expansion of τ
(
~p0 + e ~Et

)
, we

obtain c (t) = exp (−t/τ0)
[
1 + 1

/
2 (t/τ0)

2 (∂F τ)p0

]
+ O

(
E2

)
, where τ0 = τ (~p0).

The exponential gives the non-scattering probability if τ is constant while the electron is accelerated by

the field and the second factor is the lowest-order correction due to the change in τ . We obtain the averages

over a collision-free flight

〈t〉 = τ0

[
1 + (∂F τ)p0

]
and

〈
t2

〉
= 2τ2

0

[
1 + 3 (∂F τ)p0

]
.

Then the average energy gained over a collisionless flight (of order E2) is:

〈E (t)− E0〉 =
{

(∂F E)p0
+ ∂F

(
τ∂E

F

)
p0

}
τ0 so 〈E (t)−E0〉 = e ~E ·

{
~vg (~p0) +

[
∂F (~vgτ)~p0

]}
τ0,

VF (E0) =
(

dE
dt

)
F

= e ~E ·
{
~vg (~p0) +

[
∂F (~vgτ)~p0

]}
, with ~vd (E0) =

∫ ∫
E0∂F

(
~vgτ

(⇀
p
))

dSp/|~vg|∫ ∫
E0dSp/|~vg| ,
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where dSp/|~vg| are the number of states in a surface element dSp in momentum space. We thus finally

obtain the relation between the field dependent drift velocity and the drift velocity in coordinate space:

VF (E0) = e
⇀

E · ~vd (E0) and vdx(E,~r, t) = VF (E,~r,t)
(eE0L) . The position-space diffusion coefficient is related to

the field dependent diffusion coefficient in energy space by [8]

Dx(E,~r, t) =
DF (E,~r, t)

(eE)2
.

Joule heating is the main energy gain mechanism, so the electrons from low-energy states in the conduc-

tion band are transferred to high-energy states by absorbing energy from the laser field. This is illustrated

in figure 1 where the peak of the electron energy distribution function exhibits increased amplitude and is

shifted to the right (higher electron energy) in the presence of the Joule heating term. Figure 2 shows the

dependence of the electron average energy on the Joule heating term. It should be noted that the Joule

heating term is only one contribution to the rate V (E, t) (eq. 3) which has the physical meaning of energy

dependent drift.

Figure 1. Comparison of the energy spectra of fe
k at

t/τL = −0.5 including and excluding Joule heating.

Figure 2. Average electron energy at scaled time of

the laser pulse including and excluding Joule heating.

E. Conclusion

In our theoretical consideration, we have assumed that the wavelength of the laser radiation is longer

than the other characteristic lengths so in the quantum-mechanical derivation we have ignored the spatial

dependence of the electromagnetic field. In the initial quantum-mechanical calculations we have consid-

ered an electron-phonon system in a spatially uniform sinusoidal electric field of frequency ΩL (dipole

approximation). After the derivation of the kinetic equation for the electron energy distribution function,
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the spatial dependence of the laser field is taken into account by explicitly including in the rates of the equa-

tion the spatially dependent envelope function that comprises the amplitude of the laser radiation electric

field. The left hand side of the initially obtained kinetic equation is represented as a current in energy space.

Consequently the energy dependent current is generalized to be energy and space dependent. The kinetic

equation is augmented with spatially dependent currents and a generalized Fokker-Planck type equation

in the energy-position manifold is obtained. Without invoking expressions for the electron vector mean-

free-path related to the momentum relaxation and the electron mobility of the sample, from elementary

arguments we have obtained the connection between the field dependent drift velocity in energy space and

the drift velocity in real space.

II. QUANTUM KINETIC THEORY FOR SPATIO-TEMPORAL DYNAMICS OF CARRIERS IN

LASER-EXCITED MATERIALS

A. Introduction

When dealing with a typical semiconductor-based optoelectronic device irradiated with laser light we

consider the optical field, the created electron-hole plasma (EHP) and the crystal lattice of the chosen ma-

terial. Light generation, propagation and amplification determine the behavior of the optical field. Carrier

generation and recombination, electrical conduction and diffusion determine the behavior of the formed

plasma. The photon energy of the laser field is converted and conserved as kinetic and thermal energy of

the plasma and thermal energy of the lattice by creation and annihilation of phonons. All the described

processes take place on different time and space scales but they should be treated in a self consistent man-

ner with the appropriate coupled equations. Laser beam filamentation, dynamic beam steering, catastrophic

optical damage, thermal lensing leading to formation of hot spots are cases requiring inclusion of spa-

tial variation in the formalism describing the dynamics of optically generated carriers interacting with the

phonons of the lattice. Inhomogeneous excitation, bulk filamentation laser damage, etc. lead to space

dependent carrier distributions.

B. Theoretical model

When a spatially homogeneous system is excited by a spatially inhomogeneous laser field, the dynam-

ical variables become inhomogeneous and off diagonal density matrices have to be introduced. A mixed

momentum and real space representation is most similar to classical distribution function and is best suited

for a comparison to semi-classical kinetics described by Boltzmann equation. A microscopic density matrix
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theory is formulated accounting for arbitrary spatial inhomogeneities in the excitation conditions leading to

space-dependent Boltzmann-Bloch transport equations for the description of spatio-temporal dynamics of

electrons and holes of inhomogeneously excited materials such as semiconductors including the coherent

interactions of carriers and the laser light field as well as transport due to spatial gradients and electrostatic

forces. Only the classical character of the laser optical field is considered while accounting for the quantum

mechanical properties of the semiconductor. Besides the interaction with the light field other important

interactions occur in the semiconductor – Coulomb interaction among the carriers giving rise to screening

and to thermalization of the nonequilibrium carrier distribution, as well as interaction with phonons lead-

ing to an energy exchange between the carriers and the crystal lattice. Based on typical length and time

scales approximations are made with the aim of obtaining numerically tractable system of equations. We

follow the approach in [11] but unlike them we treat all the scattering terms explicitly without resorting

to relaxation time approximation [12]. We also include terms that lead to transitions between valence and

conduction band – impact ionization and Auger recombination [3].

We consider a two-band model of an udoped semiconductor such as GaAs. In the laser-matter inter-

action process the physical variables that are directly related to observables of the system such as optical

polarizations and distribution functions are all single-particle quantities calculated by the density matrix. To

describe space-dependent phenomena a Wigner representation of the single-particle density matrix can be

used. In Wigner representation the space-dependent distribution functions (intraband density matrices) of

electrons and holes and polarization (interband density matrix) are defined as

fe(~k, ~r) =
∑
~q

ei~q·~r〈c~k+ 1
2
~q
+ c~k− 1

2
~q
〉, fh(~k, ~r) =

∑
~q

ei~q·~r〈d~k+ 1
2
~q
+ d~k− 1

2
~q
〉 and

p(~k, ~r) =
∑
~q

ei~q·~r〈d−~k+ 1
2
~q
c~k+ 1

2
~q
〉,

where c+
~k

and d+
~k

(c~k
and d~k

) denote creation (annihilation) operators for electrons and holes with wave

vector, respectively and the brackets denote the expectation value of these operators.

The single-particleHamiltonian describing the free carrier interacting with a classical light field as well

as the free phonons is given by:

H0 =
∑

~k

εe
~k
c+
~k

c~k
+

∑

~k

εh
~k
d+
~k

d~k
+

∑

~q

~ω~qb
+
~q b~q−

−
∑

~k,~q

[
~µcv(~k) · ~E+

~q (t)c+
~k+1

2 ~q
d+

−~k+1
2 ~q

+ ~µ∗cv(~k) · ~E−
~q (t)d+

−~k+1
2 ~q

c+
~k+1

2 ~q

]
(1)

where µ
(
~k
)

is the component in the direction of the laser field polarization of the interband optical dipole

matrix elememt between the electron state
∣∣∣c,~k

〉
and hole state

∣∣∣v,−~k
〉

. The field is represented by two
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counterpropagating waves and the positive frequency component is given by:

~E+ (~r, t) =
1
2

(
~E+ (~r, t) eiKzz−iωt + ~E− (~r, t) e−iKzz−iωt

)
(2)

and is expanded in a Fourier series

~E+ (~r, t) =
∑

~q

~E0
~q (t) ei(~q·~r−ωt) =

∑

~q

~E+
~q (t) ei~q·~r (3)

In the absence of an external light field the electron states are eigenstates of an ideal periodic lattice. Devi-

ations from this idealized periodicity due to lattice vibrations lead to a coupling of the different electronic

states. This interaction is described by the carrier-phonon Hamiltonian.

Hcp
I =

∑

~k,~k′,~q

C~q

[
c+
~k+~q

b~qc~k
− c+

~k
b+
~q c−~k+~q

d~k+~q
+ b~qd

+
~k

d~k
+ b~q + d~k+~q

]
, (4)

where the electron- phonon coupling constant for interaction with optical phonons is:

∣∣C~q

∣∣2 =
(
~ωLO

2V

)[
1

εr (∞)
− 1

εr (0)

] [
e2

ε0 (q2 + Q2
s)

]
(5)

εr (∞) and εr (0) are the relative static and optical dielectric constant, respectively, ε0 is the absolute

dielectric constant of the vacuum, ~ωLO is the optical phonon energy and V is the normalization volume.

The charged carriers interact via the Coulomb potential V~q and the Hamiltonian describing carrier-carrier

interaction processes conserving the number of particles per band is given by:

Hcc
I =

∑

~k,~k′,~q

V~q

[
1
2
c+
~k

c+
~k′

c~k′+~q
c~k−~q

+
1
2
d+
~k

d+
~k′

d~k′+~q
d~k−~q

− c+
~k

d+

−~k′
d−~k′+~q

c~k−~q

]
(6)

This carrier-carrier Hamiltonian can be separated into a mean field (Haretree-Fock) Hcc
HF part and a re-

maining part depending on two-particle correlations Hcc
corr. The effective single particle Hamiltonian is

Heff = H0 + Hcc
HF . The correlation part of the carrier-carrier interaction Hamiltonian gives two phenom-

ena: scattering processes between the carriers and screening of the bare Coulomb interaction.

The part of the perturbation Hamiltonian that yields impact ionization and its inverse process, Auger

recombination is given by [3], [13]:

H
cc(c−v)
I =

∑

~k,~k′,~q

[
Me (q) c+

~k+~q
c+
~k′−~q

d+

−~k′
c~k

+ M∗
e (q) c+

~k
d−~k′c~k′−~q

c+
~k+~q

]
+

+
∑

~k,~k′,~q

[
Mh (q) d+

~k+~q
d+
~k′−~q

c+

−~k′
d~k

+ M∗
h (q) d+

~k
c−~k′d~k′−~q

d~k+~q

]
(7)

Me (q) = V~qg~q, where V =
~q

4πe2

V ε0q2
is the Coulomb potential and g~q is the interband-transition form factor.
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C. Generalized Boltzmann-Bloch equations

By using Heisenberg’s equations of motion, the equations of motion for the single-particle density ma-

trices in Wigner representation can be derived. The effective single-particle Hamiltonian Heff gives a

closed set of equations for the distribution functions of electrons and holes and by interband polarization.

Being Wigner distributions these quantities are functions of space and momentum but there is a big dif-

ference of time scales between the momentum space and real space dynamics. Scattering and dephasing

processes lead to fast relaxation of the microscopic variables towards their local quasi-equilibrium values

on a femtosecond time-scale while the spatial transport happens on a much slower time-scale (10 ps to ns).

Because of the typical separation of time scales between the ~k-space and ~r-space dynamics, the influence

of spatial gradients on the k-space dynamics is often negligible. However, some of the scattering terms

in the equations of motion for the distribution functions conserve the density of carriers and therefore the

density is not influenced by the fast relaxation processes and its spatial transport cannot be neglected. In

the equation of motion for the polarization no conserved quantities exist and thus the spatial transport of

polarization is usually not important. In principle the complete set of equations required is therefore the

Maxwell-Boltzmann-Bloch-Poisson equations for the nonequilibrium distribution functions fα
(
~k,~r

)
, in-

terband polarization p
(
~k, ~r

)
, electric potential Φ(~r), and the laser field ~E (~r, t), with ~k and ~r being the

two-dimensional (2D) vectors in reciprocal (momentum) space and real space, respectively.

Keeping the first order spatial derivatives of the distribution functions and neglecting any spatial trans-

port of polarization, the equations of motion for electron and hole distribution functions are given by the

generalized Boltzmann equations for two band model including the coherent interband transport contribu-

tions.

∂

∂t
fα(~k, ~r, t) +

1
~

∂εα(~k, ~r)
∂k

· ∂fα(~k, ~r, t)
∂r

− 1
~

∂

∂r
[δεα(~k, ~r) + qΦ(r)] · ∂fα(~k, ~r, t)

∂k
=

= Rα(~k, ~r) +
∂

∂t
fα(~k,~r)col (8)

The lowest order contribution to the polarization is included, where the spatial coordinate enters only

as a parameter and locally the dynamics coincide with those of the inhomogeneous case and there are

no transport effects. This lowest order picture is sufficient to describe pump-probe experiments in which

filamentation is observed.

∂

∂t
p(~k, ~r, t) = − i

~
[εe(~k, ~r, t) + εh(−~k, ~r, t)]p(~k, ~r, t)−

− iΩ(~k, ~r)[fe(~k, ~r, t) + fh(−~k, ~r, t)− 1] +
∂

∂t
p(~k,~r)col (9)

εα
(
~k, ~r

)
= εα

(
~k
)

+ qαΦ(r) + δεα
(
~k, ~r

)
,
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εe,h
(
~k
)

=
~2k2

2mα
is the single particle energy, δεα(~k, ~r) = −∑

~k′
fα(~k, ~r)V s

~k′−~k
+

1
2

∑
~k′

[V s
~k′−~k

− V~k′−~k
]

is the renormalization of the single particle carrier energy due to exchange interaction, V s
~q =

V~q

ε (~q, 0)
is

the screened Coulomb potential. The electrostatic potential due to the Hartree terms in the mean field

Hamiltonian satisfies the Poisson equation:

∂2

∂r2
Φ(~r) =

4πe

ε0V

∑

~k

[
fe

(
~k, ~r

)
− fh

(
~k, ~r

)]
(10)

The generation rate in the equation (1) is given as follows:

Rα
(
~k, ~r

)
= i

[
Ω

(
~k, ~r

)
p ∗

(
~k, ~r

)
− Ω ∗

(
~k, ~r

)
p

(
~k, ~r

)]
, (11)

where Ω
(
~k, ~r

)
is the renormalized Rabi frequency defined by:

~Ω
(
~k, ~r

)
= µ

(
~k
)

~E (~r, t) +
∑

~k′

p
(
~k′, ~r

)
V s

~k−~k′ . (12)

The second term in the above expression is the internal field responsible for Coulomb enhancement.

D. Scattering processes

Within a semiclassical picture when scattering processes are described in terms of scattering rates, the

scattering contributions to the equation of motion have the structure of the Boltzmann collision terms. The

electron-phonon scattering rates are obtained from Fermi’s golden rule and quadratic or higher order terms

and terms involving simultaneous electron-phonon and hole-phonon interaction have been neglected in the

polarization and in the carrier-phonon Hamiltonian. Incoherent scattering processes appear for the first time

in second order contributions [3], [11], [14], [15].

Collisional contributions in equations (1) and (2) lead to relaxation in the carrier distributions and decay

in the interband polarization:

∂

∂t
fα

(
~k, ~r

)
col

=
∂

∂t
fα

(
~k, ~r

)
αα

+
∂

∂t
fα

(
~k, ~r

)
eh

+
∂

∂t
fα

(
~k,~r

)
LO

(13)

∂

∂t
p

(
~k, ~r

)
col

=
∑

~q

[
W p

~k,~k−~q
p

(
~k − ~q, ~r

)
−W p

~k−~q,~k
p

(
~k, ~r

)]
(14)

The first term on the RHS of equation (3) depicts the scattering processes arising from the correlation part

of the carrier-carrier Hamiltonian and the third term arises from the carrier-phonon Hamiltonian

∂

∂t
fα(~k, ~r)αα/LO =

∑

~q

[W e,h
~k,~k−~q

fe,h(~k − ~q, ~r)(1− fe,h(~k, ~r))−W e,h
~k−~q,~k

fe,h(~k, ~r)(1− fe,h(~k − ~q, ~r))]

(15)
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where the scattering matrices are given by:

W
e,h(αα)
~k−~q,~k

=
2π

~
∑

α=e,h

∑

~k′

∣∣V s
~q

∣∣2δ
(
εe,h
~k−~q

+ εα
~k′+~q

− εα
~k′ − εe,h

~k

)
fα

(
~k′, ~r

) [
1− fα

(
~k′ + ~q, ~r

)]
(16)

W
e,h(LO)
~k−~q,~k

=
2π

~

∣∣∣Ce,h
q

∣∣∣
2
(Nq + 1) δ

(
εe,h
~k−~q

− εe,h
~k

+ ~ωq

)
+

2π

~

∣∣∣Ce,h
q

∣∣∣
2
Nqδ

(
εe,h
~k−~q

− εe,h
~k
− ~ωq

)
(17)

The Boltzmann scattering matrices W e,h
~k−~q,~k

for electrons and holes are real quantities and the scattering

matices W p
~k−~q,~k

in the equation of motion for the polarization are complex and the real part is related to

W e,h
~k−~q,~k

according to:

Re
(
W p

~k−~q,~k

)
=

1
2
W e

~k−~q,~k

[
1− fe

(
~k − ~q, ~r

)]
+ W e

~k,~k−~q
fe

(
~k − ~q, ~r

)
+

+
1
2
W h

~q−~k,−~k

[
1− fh

(
~q − ~k, ~r

)]
+ W h

−~k,~q−~k
fh

(
~q − ~k, ~r

)
(18)

The real part of W p
~k−~q,~k

describes scattering processes leading to a dephasing of the polarization and the

imaginary part describes second-order contributions to the band-gap renormalization.

The carrier-carrier scattering rate in the collisional contribution to the polarization equation describing

the effect of correlations is given by:

W
p(αα)
~k−~q,~k

=
π

~
∑

α=e,h

∑

~k′

∣∣V s
~q

∣∣2δ
(
εe,h
~k−~q

+ εα
~k′+~q

− εα
~k′ − εe,h

~k

)
×

× fα
(
~k′, ~r

) [
1− fα

(
~k′ + ~q, ~r

)]
×

[
1− fe,h

(
~k − ~q, ~r

)]
+

+ fe,h
(
~k − ~q, ~r

)
fα

(
~k′ + ~q, ~r

) [
1− fα

(
~k′ + ~q, ~r

)]
(19)

The carrier-phonon scattering rate in the collisional contribution to the polarization equation is given by:

W
p(LO)
~k−~q,~k

=
π

~
|Cq|2 δ

(
εe,h
~k−~q

− εe,h
~k

+ ~ωq

){
Nqf

e,h
(
~k − ~q, ~r

)
+ (Nq + 1)

[
1− fe,h

(
~k − ~q, ~r

)]}
+

+
π

~
|Cq|2 δ

(
εe,h
~k−~q

− εe,h
~k
− ~ωq

){
(Nq + 1) fe,h

(
~k − ~q, ~r

)
+ Nq

[
1− fe,h

(
~k − ~q, ~r

)]}
(20)

E. Impact ionization and Auger recombination

Since we interested in the processes of laser damage and filamentation in the semiconductor material,

we include the
∂

∂t
fα

(
~k, ~r

)
eh

terms that lead to transitions between valence and conduction bands, i.e.

impact ionization term and Auger recombination term [3]. Impact ionization and Auger recombination are

second-order two-particle Coulomb scattering processes (proportional to Coulomb scattering). In a case

when we have a homogeneous system (material) that is either homogeneously or inhomogeneously excited

the Coulomb matrix elements depend on the momentum transfer ~q only, i.e. ∝ ∣∣V~q

∣∣2.
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These contributions are derived using second-order perturbation theory such as Coulomb scattering [3]

which is very important to conduction-electron dynamics and the change of electron density.

∂

∂t
fe

(
~k, ~r

)
e−h(imp)

=Neff
2π

~
∑

~q

∣∣V~q

∣∣2g~qδ

(
2εe

~k
− εe

|~k+~q| + εh

|~k−~q| + EG

)
×

×
[
1− fe

(
~k,~r

)]2
fe

(
~k + ~q, ~r

) [
1− fh

(
~k − ~q, ~r

)]
+

+Neff
2π

~
∑

~q

∣∣V~q

∣∣2g~qδ

(
2εe

|~k−~q| − εe
~k

+ εh

|~k−2~q| + EG

)
×

× fe
(
~k, ~r

) [
1− fe

(
~k − ~q, ~r

)]2 [
1− fh

(
~k − 2~q, ~r

)]
(21)

∂

∂t
fe

(
~k,~r

)
e−h(rec)

=
2π

~
∑

~q

∣∣V~q

∣∣2g~qδ
(
εe
~k
− 2εe

~k−~q
− εh

~k−2~q
− EG

)
×

×
[
1− fe

(
~k,~r

)]
×

[
fe

(
~k − ~q, ~r

)]2
fh

(
~k − 2~q, ~r

)
+

+
2π

~
∑

~q

∣∣V~q

∣∣2g~qδ
(
εe
~k+~q

− 2εe
~k
− εh

~k−~q
−EG

)
×

×
[
fe

(
~k, ~r

)]2 [
1− fe

(
~k + ~q, ~r

)]
fh

(
~k − ~q, ~r

)
(22)

with g~q ≈ 2 (m∗
e/m0).

The semiclassical generation rate for carrier-light interaction is obtained by eliminating the polarization

as independent variable [15]. This is done by solving the equation for polarization within the adiabatic and

Markov approximation. For Gaussian pulse with a space dependent amplitude

E (~r, t) = EL (~r) exp
[
− (t/τL)2

]
(23)

the time integration of the polarization equation (2) gives

Rα
(
~k, ~r

)
= (2π)1/2

(
MkEL (~r)

~

)2

τL exp
[
−2 (t/τL)2

]
exp

[
−1

2
(τL∆ωk)

2

]
×

[
1− fe

(
~k, ~r

)
− fh

(
~k,~r

)]

(24)

where

∆ωk = ωL − 1
~

(
εe

(
~k, ~r

)
+ εh

(
~k, ~r

))
(25)

is the detuning of a given transition with wavevector ~k from resonance, ωL being the laser frequency.

The time integration is possible only under the assumption that during the laser pulse the polarization

is not influenced by any scattering processes leading to phase-breaking during carrier generation. The only

density dependence of this rate is due to phase-space filling. While adiabatic elimination of polarization

leads to a simple closure of the total set of equations, this set of equations have a severe deficiency, especially
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in the presence of any kind of spatial inhomogeneity. That is why in the formulated approach we are keeping

the Boltznann-Bloch transport equations for the three distribution functions fe
(
~k, ~r

)
, fh

(
~k, ~r

)
, p

(
~k, ~r

)
,

though all transport terms involving explicit spatial variation of p
(
~k,~r

)
are ignored. For ultrafast spatial

inhomogeneous processes such spatial terms in the polarization equations should be important.

F. Numerical procedures in progress

The microscopic dynamics of the distribution unction and the nonlinear polarization are governed by

the equations of motion (1) and (2). The ~k-resolved interband polarization equations have to be solved self-

consistently for all space and time grid points. A full kinetic treatment of the scattering processes will be

performed by using e.g. Monte Carlo simulations. Generalized Monte Carlo methods taking into account

phase relations between different type of carriers (polarization effects), interaction of carriers with external

coherent inhomogeneous electromagnetic field (generation effects), and the correlation and renormalization

effects associated with carrier-carrier interaction can be utilized [16].

G. Conclusion

A microscopic quantum-kinetic theory based on density matrix formalism [17] is formulated to describe

the processes of short pulse laser interaction with materials such as semiconductors accounting for arbitrary

spatial inhomogeneities in the excitation conditions and other spatial phenomena such as filamentation

of tightly focused femtosecond laser pulses, structural modification and catastrophic optical damage. A

system of Boltzmann-Bloch transport equations are established that include both space and momentum

dependence of the electron and hole distribution functions and the polarization. Microscopic electron-

phonon and electron-electron scattering terms as well as scattering terms that lead to transitions between

valence and conduction bands, i.e. impact ionization and recombination terms, are included explicitly in

the equations. The formulated theory describes the spatio-temporal dynamics of electrons and holes in

inhomogeneously excited materials including the coherent interactions of carriers and the laser light field

as well as transport due to spatial gradients and electrostatic forces.
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